
Results on Classic Segmentation Problems
❑ Multiatlas Segmentation of Subcortical structures:

❑ Multimodal Brain MRI, Tumor Segmentation:

❑

❑ Multiatlas Segmentation of Lobes: 

❑ Simulated Mild Lesion, Tissue Segmentation:

❑ Gibbs’s convergence time varies severely with the MRF model 
and the data, making it very difficult to predict burn-in. 

❑ For a safe-side Gibbs burn-in of 5000, FA-BC is 10-20x faster.

Introduction and Motivation
❑ Accounting for uncertainty in automated segmentation results

can improve risk analysis in clinical procedures and reliability in
clinical diagnosis and studies.

❑ Typical segmentation methods, e.g., using graph cuts or using 
expectation maximization (EM) and hidden Markov random fields 
(MRFs), typically produce a single optimal solution, and don’t 
provide information about (i) object-boundary uncertainty or
(ii) alternate close-to-optimal solutions.

❑ To estimate uncertainty, some methods intend to sample
segmentations from label-image posterior models using Markov
chain Monte Carlo (MCMC) sampling or perturbation models.
However, they cannot guarantee sampling from the true
posterior, deviating significantly in practice.

❑ We propose methods that guarantee exact sampling, in finite 
time, from generic Bayesian MRFs to estimate uncertainty.

Validation on Simulated Data
❑ Mean and standard deviation (SD) per voxel (for multi-category 

case, we generalize SD by square-root of unalikeability)
❑ Difference between ideal Gumbel (  ) and its tractable 

approximation aGPM [Alberts et. al. 2016 ISBI] (  ): 

❑ 128-voxel 1D image, 2 labels (average over multiple images): 

❑ aGPM can be lead to a
strong bias in the empirical
mean estimate near edges.
Our empirical mean estimate
is much closer to ground truth.

❑ Our FA-BC converges faster
than our CFTB-BC for many MRF models.
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Our Approach for Uncertainty Estimation
q We introduce a new framework for uncertainty estimation in

segmentation by relying on perfect MCMC sampling, in finite
time, from generic Bayesian MRF models.

q Perfect MCMC tracks parallel coupled chains (one chain
started at each point in state space, each chain using the same
random number generator) and then checks coalescence.

q We propose perfect sampling of label images in two ways:
(i) by combining coupling-from-the-past (CFTP) [Propp-Wilson 
1996 Rand. Struct. Algo.] with the bounding-chain (BC) [Huber 
2004 Ann. Appl. Prob.] scheme, which we call CFTP-BC.
(ii) by theoretically extending Fill’s algorithm (FA) [Fill 1998 
Ann. Appl. Prob.] using the BC scheme, which we call FA-BC.

CFTP-BC Algorithm for Perfect Sampling
q Consider Markov chain     with state space , 

where     is the set of subsets of label set 
q For    , each state, say,   , contains a set of states 
q Initialize      to the label set , for all voxels v.
q At voxel v, let                      and                       be the 

max and min conditional probabilities over all possible chains.
q At each voxel v, do the following:

(1) In the bounding chain    , initialize the set of labels
(2) Draw   uniformly from the label set   . Draw  
(3) If                           , then do nothing.
(4) If                                                  , insert  into
(5) If                           , then insert   into set     and exit.
(6) Repeat from Step 2.

q When    ,     is a singleton, say      ,then all Markov chains     
have coalesced to the label image   

Our FA-BC Algorithm for Perfect Sampling
q Based on acceptance-rejection sampling. Generate proposal:

pick randomly, a state z and integer T > 0; run (reverse) 
Markov chain for T steps to take z -> x. Accept proposal x by 
simulating parallel coupled chains, constrained so that x -> z, 
and checking for coalescence after T steps.

q Let   be label at voxel   for time       along Markov chain path
and let                     be conditional probability 

conditioned on the neighbor-pixels’ labels for the path
q Initialize 

1. At time t, do the following at each voxel  : 
a) In the bounding chain    , initialize set of labels
b) Draw   uniformly from label set 
c) If        , draw                                ; 

otherwise draw  
d) If                           , then do nothing.
e) If                                                  , then insert 

label   into the set
f) If                           , then insert label   into    . Exit

2. Increment t by 1. If        , repeat step 1. If        and 
coalescence has occurred then accept x as a draw.

Sample Mean                Sample SD (voxelwise)

Data        Ours        aGPM Gibbs        Data     Ours

MAP          Ours        aGPM Gibbs       aGPM Gibbs

FLAIR   T2     MAP   Ours   aGPM Gibbs    Ours   aGPM Gibbs

T1    MAP    Ours   aGPM Gibbs      Ours    aGPM Gibbs       

Ours        aGPM Gibbs        Ours        aGPM Gibbs


