

Dual Language Models for Code Switched Speech Recognition Saurabh Garg, Tanmay Parekh, Preethi Jyothi

Department of Computer Science and Engineering, Indian Institute of Technology Bombay

MAIN GOAL

- Code-switching is when speakers switch between multiple languages within a single utterance.
- Common phenomenon in multilingual societies.
- Limited availability of data poses challenges for building computational models for codeswitched speech.
- **Objective:** How do we build better language models (LMs) for code-switched speech without the aid of external resources?

APPROACH

- Dual language models (DLM): Combine two monolingual LMs and use a probabilistic model to switch between them
- □ DLMs are structured as a cooperative game between two players, each in charge of generating tokens in one of two languages:
 - Each player produces at least one token before switching or terminating
 - For simplicity, players do not retain any state on switching

Perplexity on the dev/test sets using standard

LMs and DLMs with different smoothing

techniques

Smoothing	De	ev	Test		
Technique	Mixed LM	DLM	Mixed LM	DLM	
Good Turing	338.3	329.2	384.5	371.1	
Kneser-Ney	329.7	324.9	376.1	369.9	

Kneser-Ney smoothed dev/test set perplexities

using varying amounts of training data

Training data	De	ev	Test		
Iraining uata	Mixed LM	DLM	Mixed LM	DLM	
Full	329.7	324.9	376.1	369.9	
1/2	362.1	350.6	400.6	389.8	
1/3	368.6	356.0	408.6	394.2	

token	ļ	ASR Syste	m	Dat	a	Mixed		DLI	N	combined	
ratoc	SAT		De	V	45.5	59	45.5	59	44.93		
Tales			Test		47.43		47.48		46.96		
DLMs	S TDNN + SAT		De	Dev 35.20		20	35.26		34.91		
			Tes	st	37.42		37.35		37.17		
ndard			oring	De	V	34.21		34.11		33.85	
			Tes	st	36.64		36.5	52	36.37		
R System Data Mive		dIM			com	hined					
SAT		Data	48			8 17	47 67		Tokon orror		
		Tost	40.40		т Л	40.17 47					
		Test	49.07		49.04		40	40.52		rates with	
NN + SAT		Dev	40.59		40.48		40.12				
		Test	41.34		4	1.32 41		1.13 1/2		training	
	Dev 40.		20	4	0.09	0.09 39.84		, z u an ng			
ivi kescorin		Test	40.98		4	0.90	40	.72	da	ata	

OBSERVATIONS

Code-switching boundaries. Code-switched

bigrams with counts of ≤ 10 occupy 87.5% of the

total number of code-switched bigrams in the

training data (of which 55% are singletons)

□ Illustrative examples.

我

Sentence	Mixed LM perplexity	DLM perplexity
门的 total 是 五十七	920.8	720.4
我没有 meeting 了	92.2	75.9

SUBSEQUENT WORK

□ Can we retain state when switching between

languages? Can we use monolingual data to pretrain

each individual monolingual LM?

Garg, et al. "Code-switched Language Models Using Dual RNNs and Same-Source Pretraining", To appear in EMNLP 2018.