

Code-switched Language Models Using Dual RNNs and Same-Source Pretraining

Saurabh Garg*, Tanmay Parekh*, Preethi Jyothi

Department of Computer Science and Engineering, Indian Institute of Technology Bombay

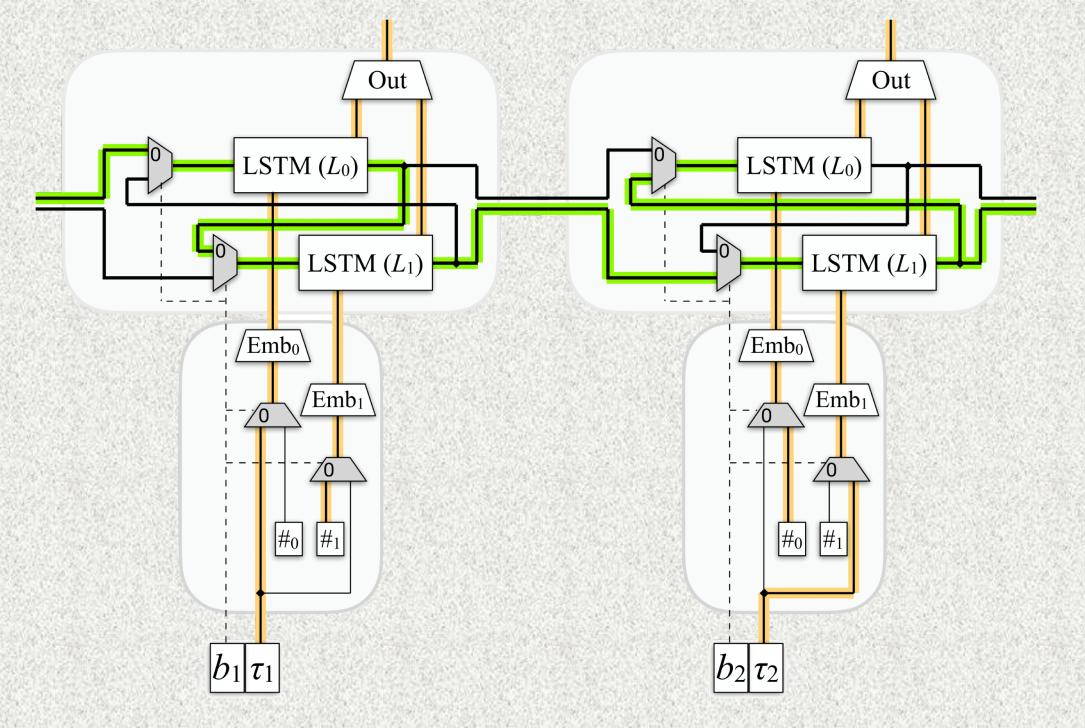
* Joint first authors

INTRODUCTION

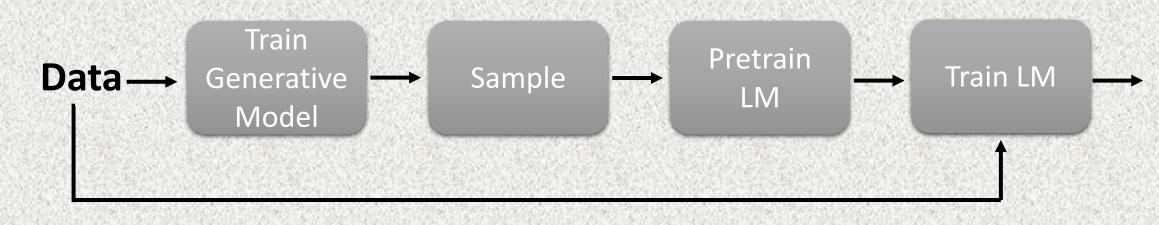
- ☐ Code-switching is a common phenomenon in multilingual societies: Switching between multiple languages within a single utterance.
- ☐ Limited availability of data poses challenges for building language models (LMs) for code-switched text.
- ☐ Objective: To build better LMs to handle code-switching, exploiting monolingual text data.

APPROACH

- □ Dual RNN language models: Two LSTM cells operating in an upstream-downstream fashion to handle two different languages.
- ☐ Cross-lingual context captured by passing hidden state between these cells.



☐ Same-Source Pretraining:



- ☐ Generative model that worked best: SeqGAN [1]
 - Uses a reward function determined by a discriminator

EXPERIMENTAL DATA

☐ SEAME corpus [2] of Mandarin-English text

	Train	Dev	Test
# Utterances	74,927	9,301	9,552
# Tokens	977,751	131,230	114,546
# English Tokens	316,726	30,154	50,537
# Mandarin Tokens	661,025	101,076	64,009

- Monolingual text for pre-training
- ☐ Syntactic features as additional input (POS Tags, Brown word clusters and language ID)

REFERENCES

- [1] Yu, Lantao, et al. "SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient." AAAI 2017
- [2] Lyu, Dau-Cheng, et al. "An analysis of a Mandarin-English code-switching speech corpus: SEAME." Age 2010

EXPERIMENTAL RESULTS

Perplexities without syntactic features

	w/o mono data		with mono data	
	Dev	Test	Dev	Test
RNNLM	89.60	74.87	74.06	61.66
D-RNNLM	88.68	72.29	72.41	60.73
With RNNLM SeqGAN	79.16	65.96	72.51	60.56
With D-RNNLM SeqGAN	78.63	65.41	72.33	60.30

Perplexities with syntactic features

	w/o mono data		with mono data	
	Dev	Test	Dev	Test
RNNLM	81.87	68.23	71.04	59.00
D-RNNLM	81.01	66.26	70.83	59.04
With RNNLM SeqGAN	77.30	63.75	68.43	55.71
With D-RNNLM SeqGAN	77.19	63.63	67.79	55.60

Decomposed Perplexities

	Eng-Eng	Eng-Man	Man-Eng	Man-Man
RNNLM	133.18	157.18	2617.28	34.98
D-RNNLM	140.37	151.38	2452.16	32.89
Mono RNNLM	101.61	181.28	2510.48	30.00
Mono D-RNNLM	101.66	156.44	2442.81	29.64
RNNLM SeqGAN	120.28	154.44	2739.85	30.40
D-RNNLM SeqGAN	120.26	149.68	2450.85	30.60

Percentage increase in unique n-grams using SeqGAN models

	RNNLM SeqGAN	D-RNNLM SeqGAN
Bigram	25.57	31.33
Trigram	75.88	83.86
Quadgram	137.98	145.71

FUTURE WORK

- ☐ Using same-source pretraining beyond code-switching
- ☐ Dual RNN LMs for speaker diarization