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Abstract

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability distribution
based on constructing a Markov chain that has the desired distribution as its equilibrium distribution. The state of the
chain after a number of steps is then used as a sample of the desired distribution. The quality of the sample improves as
a function of the number of steps.

Though a Markov chain gives us a neat solution, the problem with using a Markov chain is that it converges to its
stationary distribution on when its simulated for a long time. To tackle this problem, the concept of perfect sampling
was introduced which can tell if the the chain we are simulating has converged or not.

In this report, we would be getting an idea about Markov chains first and then go through various MCMC sampling
methods in existence. We then see how perfect sampling fits into some of these methods and extend it over posteriors.
We extend perfect sampling algorithms to sample from general posteriors using bounding chains. We also see, how we
can use the posterior sampling methods for MRI Image Segmentation and uncertainty estimation.
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Chapter 1

Introduction

Markov process, is a stochastic process that satisfies the Markov property (or memory-less
property) i.e. if the conditional probability distribution of future states of the process (conditional
on both past and present states) depends only upon the present state, not on the sequence of
events that preceded it. Monte Carlo methods are a class of computational algorithms that rely on
repeated random sampling to obtain numerical results. The aims of Monte Carlo methods are to
solve these problems:
Problem 1: to generate samples {x(r)}R

r=1 from a probability distribution φ(x).
Problem 2: to estimate expectations of functions under this distribution.
Sometimes, the distributions are such that it is not easy to generate samples which are distributed
exactly in the same way as the distribution we want to sample from. These samples points some
times are not the exact representation of the underlying distribution. Lets say that we want to
draw samples from the distribution P(x) which we know with in a multiplicative constant such
that

P(x) = P∗(x)/Z

where P(x) is the actual probability of occurring of x and (Z) is the normalization constant i.e.
(Z) =

∫
X P∗(x)x where X is the entire space. Many methods require the value of K for correct

sampling. In case of Gaussian, finding this K is very easy, but in general this can be a very tedious
task. Now, consider a binary image of size 256× 256, the number of operations required to find
the value of K requires number of operations proportional to the number of total states possible i.e
2256×256 ≈ 1019730. Given the current computation power available, it is almost next to impossible
to iterate over the state space and find the exact value of K.

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a
probability distribution based on constructing a Markov chain that has the desired distribution
as its equilibrium distribution. The idea behind these methods is, if Markov chains run for long
enough, their state will be distributed as their stationary distribution. Markov chains gives a
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method to sample from certain distributions which otherwise would have been very difficult
to sample from because their partition function can not be computed. Though Markov chains
gives us a nice way, to sample from the distribution, the time of convergence is unknown i.e. the
time it will take to converge to a stationary distribution. To overcome this problem, the idea of
perfect sampling was introduced which can tell whether the chain which is being simulated has
converged or not.

1.1 Organization of the report

In the next chapter, we will discuss some preliminary knowledge that is required to under stand
the Markov chains and perfect sampling. In third chapter, we will introduce Markov chain
Monte Carlo methods for sampling. In chapter four, we will discuss the idea of perfect sampling
and few perfect sampling algorithms. We will also discuss, bounding chains algorithm for anti
ferromagnetic system (repelling spin system) and sampling from posteriors. We will show, some
results on posterior sampling and how it can be used to get exact MRI Brain Image segmentation.
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Chapter 2

Prerequisites

In this chapter, we will discuss some sequence of sophisticated Monte Carlo Methods [8]. We will
also discuss some basic properties of Markov chains.

2.1 Monte Carlo Methods

2.1.1 Importance Sampling

Importance sampling is a method to approximate the expectation of the function φ(x). Lets say,
that the target distribution is P(x) and we are able to evaluate it within a multiplicative constant
K, i.e. we have P∗(x) such that P(x) = P∗(x)/K. But P(x) is very complicated to directly sample
from, and we assume we know a simple density Q(x) from which we can generate samples and
which we can evaluate within in a multiplicative constant. In importance sampling, we generate
N samples {x(n)}N

n=1 from Q(x). To take in to account the fact that samples are from Q(x) not
from P(x), we introduce weights

wn =
P∗(x(n))
Q∗(x(n))

which is used as the importance of each sample.

2.1.2 Rejection Sampling

Same as above we assume, we have P(x) which is very complicated to directly sample from, and
we assume we know a simple density Q(x) from which we can generate samples and they can be
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evaluated within in a multiplicative constant K. We further assume that we know the value of
constant c such that

cQ∗(x) ≥ P∗(x) ∀x

We generate two random numbers. The first, x, is generated from the proposal density Q(x).
We then evaluate cQ(x) and generate a uniform random number u from the interval [0, cQ(x)].
Evaluate P∗(x) and accept or reject the sample x by comparing the value of u with the value of
P(x). If u ≥ P(x) then x is rejected, otherwise it is accepted.

2.2 Markov Chains

Definition. A discrete time stochastic process Xn | n ∈ I with a countable state space S defined on a
probability space (σ, F, P ) is said to be a Markov chain if it satisfies the Markov property which is given as
below

P{Xn = j|{Xi|i ≤ n, i ∈ I}} = P{Xn = j|Xn−1}, ∀j ∈ S, n ∈ I

A Markov chain {Xn|n ∈ I} is said to be time homogeneous if,

P{Xn = j|Xn−1 = i} = P{X1 = j|X0 = i}, ∀i, j ∈ S, n ∈ I

For a time homogeneous Markov chain {Xn|n ∈ I}, the transition matrix of the chain is defined
as,

T = (tij), tij := P{X1 = j|X0 = i}, ∀i, j ∈ S

2.3 Properties

2.3.1 Reducibility

Definition. A Markov chain is said to be irreducible if it is possible to reach every state from every state.
Formally, this can be written as,

i→ j ∀i, j ∈ S

A state j is said to be accessible from a state i (written as i→ j), if a system started in state i has
a non-zero probability of transitioning into state j at some point. Formally, Formally, state j is
accessible from state i if there exists an integer nij ≥ 0 such that,

P(Xnij = j|X0 = i) = p
(nij)

ij ≥ 0

where p
(nij)

ij is the value of the i,jth element in the matrix Tnij . This gives the probability of going
from state i to state j in nij steps.

4



2.3.2 Periodicity

Definition. A Markov chain is aperiodic if every state is aperiodic.
A state i has period k if any return to state i must occur in multiples of k time steps. Formally, the
period of a state is defined as,

k = gcd{n ≥ 0|P(Xn = i|X0 = i) ≥ 0}

provided that this set is not empty. Oth- erwise the period is not defined. If k = 1, then the state is
said to be aperiodic: returns to state i can occur at irregular times. It can be demonstrated that a
state i is aperiodic if and only if there exists n such that for all n′ ≥ n,

P(Xn′ = i|X0 = i) > 0

2.3.3 Transience and Recurrence

Definition. A state i is said to be transient if, given that we start in state i, there is a non-zero probability
that we will never return to i. Formally, let the Ti be the first return time to state i,

Ti = in f {n ≥ 1|Xn = i|X0 = i}

The number
f (n)ii = P(Ti = n)

is the probability that we return to the state i for the first time after n steps. Therefore, i is transient
if,

P(Ti < ∞) =
∞

∑
n=1

f (n)ii < 1

State i is recurrent if it is not transient.

2.3.4 Ergodicity

Definition A state i is said to be ergodic if it is aperiodic and recurrent. i.e. a state is ergodic, if it is
recurrent, has a period of 1 and has a finite mean recurrence time. If all state are in an irreducible
Markov chain is ergodic, then the chain is said to be ergodic.

2.3.5 Stationary Distribution

Definition π is called the stationary distribution and the Markov chain with transition matrix T.
Let {Xn|n ≥ 0} be a Markov chain with the state space S and transition matrix T = (tij). Let µ0
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denote the initial distribution. Let µn denote the distribution of Xn i.e. µn is a probability measure
given by,

µn(i) = P(Xn = i), ∀i ∈ S

It can be seen that, µn+1 = µnP. Suppose we know that µn → π, i.e., //

∀ε > 0, ∃n0 s.t. |µn(i)− π(i)| < ε, ∀n ≥ n0, i ∈ S

When n→ ∞ we get,
π = πT

and if µ0 = π, then,
µ1 = µ0T = πT = π

µn = π, ∀n ≥ 0

i.e. if the initial distribution of the Markov chain is given by π which satisfies π = πT, then the
distribution of Xn remains as π i.e. it always remains stationary.
Theorem. Let Xn|n ≥ 0 be an irreducible, aperiodic Markov chain whose state space S is finite. Then,

lim
n→∞

sup |P{Xn = j|X0 = i} − π(j)| = 0, ∀i, j ∈ S

where π is the unique stationary distribution.
This is the basic fact that is exploited when constructing chains during the Monte Carlo Markov
Chain procedure. This result tells us that as we tend to infinity, the distribution of our chain
reaches that of the stationary distribution. It means that, as we run our chain from some initial
distribution, if we run the chain for long enough, we will reach the stationary distribution.

2.3.6 Reversibility

Definition. A Markov chain {Xn|n ≥ 0} is said to be reversible if there is a stationary distribution ÏĂ
over its states such that:

πitij = πjtji ∀i, j ∈ S

This is known as the detailed balance condition.
Reversible Markov chains are common in Markov chain Monte Carlo approaches because the
detailed balance equation for a desired distribution π necessarily implies that the Markov chain
has been constructed so that π is a steady-state distribution.

2.3.7 Coupling

Definition. Coupling of Markov chains is a process {(Xn, Yn)|n ≥ 0} such that {Xn|n ≥ 0} and
{Yn|n ≥ 0} are Markov chains with transition matrix P which may have different initial distributions such
that

Xn+k = Yn+k, k ≥ 1 if Xn = Yn
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Chapter 3

Markov Chain Monte Carlo
Sampling Methods

One of the drawbacks of Importance sampling and rejection sampling is the proposed density
Q∗(x) is similar to P∗(x). In many problems it is very difficult to create a density Q(x) which is
similar to P∗(x) and yet simple.
Let π be the stationary distribution. Consider the problem of sampling from π and as we know
from the properties of Markov chains mentioned above, that we sample from π, if we have a
transition matrix T such that the reversibility condition is satisfied on T and π.

3.1 Metropolish Hastings Method

This algorithm [4], instead make use of a proposal density Q which depends on the current state
x(t). The proposal density is Q(x′; x(t)) is fixed density from which we can draw samples. We
see Q(x′, x(t)) as the probability of transitioning from x(t) to a new state x′, thus if it satisfies the
reversibility condition then we are done as we got our transition matrix T. But, in general, this will
not be the case. With out loss of generality assume,

πxQ(x; y) > πyQ(y; x)

To overcome this problem, we define a function α(., .) such that the transition matrix is give by,

α(x, y) = min{1,
πyQ(y; x)
πxQ(x; y)

}

This gives a transition matrix which can be used to simulate a Markov chain whose stationary
distribution is given by π. α(x; y) is interpreted as the probability of acceptance of new state.
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Algorithm 1 Metropolish Hastings Algorithm

1: Initialise x(0) to some state ∈ S
2: for i=1:N do
3: Generate y from Q(.; x(i)) and u from U(0, 1)
4: if u < α(x(i), y) then
5: x(i+1) ← y
6: else
7: x(i+1) ← x(i)

3.2 Gibbs Sampling

Gibbs sampling [2] is generally used when we have more than one dimensions to sample from. Let,
the state space is d-dimensional x1, x2, x3....., xd and we wish to sample from distribution π which
defined over this state space. Gibbs sampling is a special case of the Metropolish Hastings method.
It is used when we can easily get the conditional distribution of one parameter conditioned on the
other parameters. Thus, this the underlying assumption in the Gibbs Sampling algorithm and one
iteration is given as,

xt+1
1 ∼ P(x1|xt

2, xt
3, ....xt

d)

xt+1
2 ∼ P(x2|xt+1

1 , xt
3, ..., xt

d)

.

.

.

xt+1
d ∼ P(xd|xt+1

1 , xt+1
2 , ..., xt+1

d−1)

This can be considered as a special case of Metropolish Hastings algorithm where the

Q(x, y) = P(yk|x1, x2..., xk−1, xk+1, ...xd)

=
P(x1, x2, ..., xk−1, yk, xk+1, ...xd)

P(x1, x2, ...xk−1, xk+1, ..., xd)

=
P(Y)

P(x1, x2, ...xk−1, xk+1, ..., xd)

=
P(Y)P(xk|x1, x2..., xk−1, xk+1, ...xd)

P(x1, x2, ..., xk−1, xk, xk+1, ...xd)

=
P(Y)P(xk|x1, x2..., xk−1, xk+1, ...xd)

P(X)

=
P(Y)Q(y, x)

P(X)

Thus this implies the probability of transitioning α(x, y) = 1 from the equations defined above.
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This is an important result as in Gibbs sampling always the new state generated is accepted. As
we earlier pointed out that Gibbs sampling is useful when we can calculate the conditionals easily.
This generally happens when we are sampling from distributions over images where it is easy to
compute the conditional probability of a pixel give other pixels.
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Chapter 4

Perfect Sampling

The biggest problem with MCMC is we don’t know when to stop. In the algorithms discussed
above, we had no idea what should be the value of number of iteration to run [3]. There is no
surety of convergence. All we know is as n→ ∞ we will reach the stationary distribution π but
there was no mention of how to check whether it has converged to π. Propp and Wilson [9]
showed that this can be done using the methodology we will discuss in this chapter.

4.1 Coupling from the past

Consider, an ergodic (irreducible and apreiodic) Markov chain which has n states and probability
of going to state j from state i be pij. Since the chains are ergodic, if we start at some state, the
probability that it ends up at state i, given it ran for long time, is π(i) where π is the stationary
distribution. To obtain samples, generally, we start with an initial state i and run the Markov
chain for some fixed M number of steps. For convenience, we say that the start and finish of the
simulation are designated as time -M and time 0.

The aim is to find the state at time 0, given we started with state i. To do this, we start by
running the chain from time -1 to time 0. Since the state of the chain at time -1 is determined by
the history of the chain from time -M to time -1, that state is unknown to us when we begin our
simulation. Hence, we must run the chain from time -1 to time 0 not just once but n times, once
for each of the n states of the chain that might occur at time -1.

Let, Markov(i) be a routine which gives a value j with probability pij. Basically, if we are at
state i at time t, the state at t+1 is given by Markov(i). For all times t with −M ≤ t ≤ 1, we can
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define a random map ft , by putting

ft(i) = Markov(i) ∀i = 1, ..., n

using separate calls to Markov() for each time t. We can suppress the details of the construction
of the ft’s and imagine that each successive f, is obtained by calling a randomized subroutine
Random Map() whose values are actually functions from the state space to itself. The output
of the fixed-time simulation is given by F0

−M(i0), where Ft1t2 is defined as the composition
ft2−1 ◦ ft2−2 ◦ .... ◦ ft1 . However, one need only keep track of the compositions F0

t , which can be
updated via the rule F0

t = F0
t+1 ◦ ft . Also note that whenever F0

t becomes a constant map, with
F0

t (i) = F0
t (i
′) ∀i, i′, then this will remain true from that point onward, and the value of F0

−M(i)
must equal the common value of F0

t (i)(1 ≤ i ≤ n), there is no need to go back to time -M once the
composed map F0

t has become a constant map.

When the map F0
t becomes a constant map, we say coalescence occurs from time t to time 0

i.e. coalescence occurs from time t. Backward simulation is the procedure of working backwards
until -t is sufficiently large that F0

t is a constant map, and then values of that occur during the
backwards simulation will almost certainly have magnitude much smaller than M. By removing
the cutoff M , and running the backwards simulation into the past until F0

t is constant, we are
achieving an output distribution that is equal to the limit, as M goes to infinity, of the output
distributions that govern fixed time forward simulation for M steps. However, this limit is equal
to π. Hence backwards simulation, with no cut-off, gives a sample whose distribution is governed
by the steady-state distribution of the Markov chain. The algorithm is as follows :

Algorithm 2 Coupling from the past

1: t = 0
2: F0

t ∗ (i) = i ∀i = 1, ..., n
3: repeat
4: t = t− 1
5: ft = RandomMap()
6: F0

t = F0
t+1 ◦ ft

7: until F0
t (.) is constant

8: return the value of F0
t

It is also proved that with probability 1 the coupling from the past algorithm returns a value and
this value is distributed according to the stationary of the Markov chain, which also implies that
CFTP algorithm will terminate in finite time and the sample is from stationary distribution i.e.
perfect sample [9].

Theorem 4.1.1. The CFTP algorithm returns a random variable distributed exactly according to the
stationary distribution of the Markov chain.

For proof of the theorem, refer to [9]
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4.2 Monotone Monte Carlo

The above algorithm gives us a way to sample from distributions exactly, i.e. we know when to
stop. But, if the number of state is too huge, like a binary image of size 256× 256 pixels, the
number of states are 2256×256 ∼ 1019730 and it is almost impossible to keep track of all states and
check the convergence. This motivates the need for another condition on the Markov chain which
can help us track all these states easily [8].

Since our procedure uses a random variable to perform the updates at time t, let us define
the function φ(x, Ut), such that ft(x) = φ(x, Ut) where Ut is the value of the random variable
used at time t to perform the update. Suppose now that the state space S of our Markov chain
admits a natural partial ordering ≤, and that our update rule φ has the property that x ≤ y
implies φ(x, U0) ≤ φ(y, U0), then we say that our Markov chain gives a monotone Monte Carlo
algorithm for approximating the stationary distribution π. From now on assume that S has
elements 0̂ and 1̂ which represent the minimal and maximal elements of the partial order. That is,
0̂ ≤ x ≤ 1̂ ∀x ∈ S.

The CFTP algorithm discussed in the previous section converges to the point where all states
in the state space have coalesced. Since, partial order is maintained in every update, even if we
just run the update on the 0̂ and 1̂ states, we conclude that Markov chain has coalesced when
these two states converges at same value (as this means all possible states in the beginning have
coalesced). Every state in between the minimal and maximal state are squeezed in between their
values and will be between them after any number of updates. The algorithm is as follows :

Algorithm 3 Montone sequence coupling from the past

1: t = 1
2: upper = 1̂
3: lower = 0̂
4: repeat
5: upper = φt(upper, ut)

6: lower = φt(lower, ut)

7: t = 2t
8: until upper = lower
9: return upper
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Figure 4.1: Run of CFTP Algorithm
Figure 4.2: Run of CFTP Algorithm

on monotone chains

Figure 4.3: Run of CFTP Algorithm
on montone chains with
extreme states

4.3 Perfect Sampling from the Ising Model

Definition. Ising model consists of discrete variables that represent magnetic dipole moments of atomic
spins that can be in one of two states (+1 or -1). The spins are arranged in a graph, usually a lattice,
allowing each spin to interact with its neighbors.

Define a spin system S, on a vertex set V as the set of all ways of assigning a spin σ(i)("-1"
or "+1") to each of the vertices i ∈ V, together with a probability distribution π on the set of
such assignment σ(.). Define a partial order on the set of configurations by putting σ ≥ τ iff
σ(i) ≥ τ(i) ∀i ∈ V. This, implies the minimal element 0̂ and maximal element 1̂ corresponds to
0̂(i) = −1 and 1̂(i) = +1 ∀i ∈ V respectively. Probability distribution for every assignment, in
an assignment is given by,

π(x) =
eβJ(x)

Zβ
where J(x) = ∑

i,j
Wi,jx(i)x(j)

Zβ is the normalization constant which is equal to ∑x∈S eβJ(x). Wi,j is the weight given to the
interaction between i and j (Wi,j > 0). J(x) measures the total interaction of the spin system.

On this model, we can use Gibbs sampling method for perfect sampling when β > 0. For
some given i ∈ V and configurations σ, τ such that σ(j) ≤ τ(j) ∀j 6= i. Define σ+1, σ−1, τ+1, τ−1
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by putting σ+1(i) = +1, σ+1(j) = σ(j) ∀j 6= i. Similarly, other configurations are defined. Update
on the vertex i of a configuration σ,

ft(σ, ut) =

−1 ut <
π(σ−1)

π(σ−1)+π(σ+1)

+1 otherwise

where ut is the random variable distributed uniformly in [0,1].
This preserves the partial order as:
We will show that in every update the partial order is preserved i.e. σ < τ. For a given i if
σ(j) < τ(j) for all j 6= i then we have,

∑
j

Wi,jσ(j) ≤∑
j

Wi,jτ(j)

π(σ−1)

π(σ+1)
= e−2β ∑j Wi,jσ(j)

π(τ−1)

π(τ+1)
= e−2β ∑j Wi,jτ(j)

Thus, as β > 0 we have,

π(σ−1)

π(σ+1)
≥ π(τ−1)

π(τ+1)
=⇒ π(σ−1)

π(σ+1) + π(σ−1)
≥ π(τ−1)

π(τ+1) + π(τ−1)

Thus partial order will be maintained and we can use the CFTP algorithm to draw perfect samples
from the Ising model.

4.4 Perfect Sampling from Posteriors with Ising Model Prior

We can extend the previous discussion about sampling from the Ising model to sample from
posterior distributions whose prior model is the Ising model. We represent the data observed
as D and we want to get samples which come from the distribution which is distributed as
P(x|D) where x ∈ S. As P(x|D) = P(D|x)P(x)

P(D)
, P(D|x) is the likelihood term and P(x) is the prior

probability. Also, in most of the cases, P(D|x) = ∏i∈V P(D(i)|x(i)), here to we assume this is the
case. Here too we have the same sample space, but we want to sample from φ(x) = P(x|D). For
given i ∈ V and configuration σ, τ, such that σ(i) ≤ τ(i) ∀j 6= i, we define σ+1, σ−1, τ+1, τ−1 by
putting σ+1(i) = +1, σ+1(j) = σ(j) ∀j 6= i. Similarly, other configurations are defined. Update
on the vertex i of a configuration σ,

ft(σ, ut) =

−1 ut <
π(σ−1)

π(σ−1)+π(σ+1)

+1 otherwise

where ut is the random variable distributed uniformly in [0,1]. This is exactly same as Gibbs
sampling procedure. This preserves partial order as :
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The only thing that we need to show is φ(σ−1)
φ(σ+1)

≥ φ(τ−1)
φ(τ+1)

because then we can use the argument
given in section 4.3 to show the partial order is maintained.

φ(σ−1)

φ(σ+1)
=

P(σ−1|D)

P(σ+1|D)

=
P(D|σ−1)P(σ−1)

P(D|σ+1)P(σ+1)

=
∏j∈V P(D(j)|σ−1(j))P(σ−1)

∏j∈V P(D(j)|σ+1(j))P(σ+1)

=
P(D(i)|σ−1(i))π(σ−1)

P(D(i)|σ+1(i))π(σ+1)

=
P(D(i)| − 1)π(σ−1)

P(D(i)|+ 1)π(σ+1)

And we saw that,

π(σ−1)

π(σ+1)
≥ π(τ−1)

π(τ+1)

=⇒ P(D(i)| − 1)π(σ−1)

P(D(i)|+ 1)π(σ+1)
≥ P(D(i)| − 1)π(τ−1)

P(D(i)|+ 1)π(τ+1)

=⇒ φ(σ−1)

φ(σ+1)
≥ φ(τ−1)

φ(τ+1)

Hence, the partial order is maintained and we can adapt to a similar sampling procedure as in
section 4.3.

4.5 Fills Algorithm

The running time of CFTP algorithm is an unbounded random variable whose order of magnitude
is typically unknown a priori and which is not independent of the state sampled, so a naive user
with limited patience who aborts a long run of the algorithm will introduce bias [5].

Let P be an ergodic transition matrix with monotone time-reversal P̄ on a poset S possess-
ing a unique minimum element 0̂ and a unique maximum element 1̂. The algorithm is as shown
in Algorithm 8.

The above algorithm is for general Markov chains which need not be monotone in nature.
As described in last section we can use this algorithm for monotone chains by only starting at
maximal state and minimal state. By the similar argument given above, if these two chains coalesce
then we found a sample from the stationary distribution π. The claim of unbiasedness with
respect to user impatience follows from the very nature of rejection sampling together with the
fact that all information is erased after each iteration.
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Algorithm 4 Fills algorithm

1: t = 1
2: repeat
3: xt = z
4: Generate Xt−1|xt, Xt−2|xt−1, ...., X0|x1

5: Generate [U1|x0, x1], [U2|x1, x2], ..., [Ut|xt−1, xt]

6: Begin chains X0,1, X0,2, ....X0,k in all possible initial states at time 0
7: Use the common U1, U2, ..., Utto update chains
8: t = 2t
9: until Until chains coalesce

10: return xt

Theorem 4.5.1. The Fills algorithm returns a random variable distributed exactly according to the
stationary distribution of the markov chain.

Proof.

P[X0 = x|accept] =
P[z→ x]P[CT(z)|x → z]

∑x′ P[z→ x′]P[CT(z)|x′ → z]

As coalescence event entails each x′ → z, we have ∀x′,

P[CT(z)|x′ → z] =
P[Ct(z) and x′ → z]

P[x′ → z]
=

P[Ct(z)]
P[x′ → z]

From the detailed balance condition π(x)P(x → z) = π(z)P(z→ x)

P[X0 = x|accept] =
P[z→ x]/P[x → z]

∑x′ P[z→ x′]/P[x′ → z]

=
π(x)/π(z)

∑x′ π(x′)/π(z)
= π(x)

4.6 Perfect Sampling from General Systems

4.6.1 Bounding Chains

Bounding chains [7] are useful for MCMC in three ways. First, they are formed from a natural
extension of couplings known as complete couplings. Second, bounding chains are themselves
Markov chains that can be simulated. Third, bounding chains allow a user to utilize perfect
sampling algorithms such as the coupling from the past.
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Definition. We say that M’ is a bounding chain for M if there exists a coupling between M’ and M such
that

Xt(v) ∈ Yt(v) ∀v =⇒ Xt+1(v) ∈ Yt+1(v) ∀v

The Potts model is an extension of the Ising model from statistical physics. Each node of a
graph is assigned a color from {1, 2, ...k} in a configuration. The energy of the configuration
x is H(x) = −∑v ∑w∈Nv 1x(v)==x(w) where Nv is set of nodes adjacent to v. The probability of
choosing a particular configuration is

π(x) =
1
Z

exp {−βJH(x)}

where J is either 1 (attractive system) or -1 (repelling system), and Z is known as partition function.
The algorithm is as follows (for general weighted combination of neighbours):

Algorithm 5 Bounding chain for Gibbs sampler

1: Choose v ∈U {1, 2, ....n}, Let Nv be the neighbours of v
2: Let y(v)← φ

3: repeat
4: Choose c ∈U {1, 2, ..., k}
5: Choose u ∈U [0, 1]
6: Let bc be the w neighbouring v with y(w) = {c}
7: Let dc be the w neighbouring v with c ∈ y(w)
8: if u < γ fmax(bc ,dc) then
9: Let y(v)← y(v) ∪ {c}

10: until u ≤ γ fmin(dc ,bc) or |y(v)| > ∆

Theorem 4.6.1. Let τ be the first time that the bounding chain detects complete coupling. Then when T
satisfies exp ( 2

T ) <
k∆

k∆−1 , there exist a constant β ∈ (0, 1) such that

P(τ ≥ (− ln β)n ln n + θ) ≤ βθ

Proof. Let Wt denotes the number of nodes v with |Yt(v)| ≥ 1. We begin at W0 = n and wish to
find the expected time until Wt = 0. Given Yt we wish to find the expected value of Wt+1.
If at time t + 1 we select a node with |Yt| > 1, then it would decrease Wt+1 by 1 at that point.
Now, if we select a color c for the node v that lies in Yt(w) for some neighbour w of v and we
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don’t exit of the repeat loop, then it increases Wt+1 by 1.

E[Wt+1|Yt] ≤Wt −∑
v

1|Y(v)|>1

n
+ ∑

v

1
n ∑

w∈Nv

1|Yt(w)>1|Yt(w)|(1− γ−1)

≤Wt −
Wt

n
+

k
n
(1− γ−1)∑

v
∑

w∈Nv

1|Yt(w)>1

≤Wt −
Wt

n
+

k
n
(1− γ−1)Wt∆

≤ βWt = βE[Wt]

where β =
[
1− 1

n
(
1− k(1− γ−1)∆

)]
, and thus it gives E[Wt] ≤ βtn. Also, E[Wt]→ 0 implies β <

1 which gives γ < k∆
k∆−1 . Application of Markov’s inequality gives us P(Wt > 1) ≤ E[Wt] ≤ βtn

and the result directly follows.

We now extend the discussion of perfect sampling using bounding chains to sample from
posteriors with an i.i.d likelihood model which is common in many image processing scenarios.
Assume that the observed data is given by Z such that P(X|Z)αP(Z|X).P(X) where X is distributed
as given by the Potts model and P(Z|X) = ∏i∈V P(Zi|Xi). The Markov chain update using the
Gibbs sampler can be written as,

Algorithm 6 Gibbs sampler with acceptance rejection

1: Choose Xi ∈U {1, 2, ....n}, Let NXi be the neighbours of Xi

2: repeat
3: Choose c ∈U {1, 2, ...k}
4: Choose u ∈U [0, 1]

5: until u ≤ eβJ(xi)P(Zi |Xi)

∑c eβJ(xi)P(Zi |Xi)

6: Assign color c to Xi

We will now go over why the acceptance rejection chain for the above sampling method is
correct. To be able to do this, we notice that the above is a step of Gibbs sampling which should
be able to sample from P(Xi|X i, Z).
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The probability of assigning a color c to X should be given by P(X = c|Xi, Z)

This means that we are indeed sampling from the posterior distribution and therefore the algorithm
is correct. The A term is chosen such that it remains a probability distribution and we could get
the best possible speedup. The above proof could have easily been done taking into consideration
just the prior term and therefore the Markov chain described for the prior/posterior ,indeed
,samples from the required distribution.

Bounding chains helps to detect convergence of a chain, but it does not define the stopping
point and so if we stop at early point and output the sample, we might get biased samples. So we
do a perfect sampling procedure above this to get unbiased or "perfect" samples using CFTP or
Fills Algorithm.

Bounding chains helps in maintaining and tracking the states of all chains. Now if they are
combined with the perfect sampling algorithms, then they can yield perfect samples from any
distribution which allows sampling from the conditional. We propose novel algorithm to sample
from the given distribution which need not be monotonic using CFTP over Bounding chains
algorithm. In CFTP, if the states have not converged, we go back in time and run the sampling
procedure again using the same random numbers at time points we have already seen. nce all the
states have coalesced to a single state, we know that convergence has occurred. This coalesced is
now detected using the book keeping of the bounding chains as described in the algorithm below.
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Algorithm 7 CFTP with bounding chains

1: T = 1
2: repeat
3: Y(v) = C ∀v ∈ {1, 2..., n}
4: for t = 1 : T do
5: if t < T/2 then
6: Ut ← Random numbers used in previous tth run
7: else
8: Ut ← U[0, 1]V

9: for each v ∈ {1, 2, ....n} do
10: Let Nv be the neighbours of v
11: Let Y(v)← φ

12: repeat
13: Choose c ∈U {1, 2, ..., k}
14: Choose u ∈U Ut

15: Let bc be the w neighbouring v with Y(w) = {c}
16: Let dc be the w neighbouring v with c ∈ Y(w)

17: if u < γ fmax(bc ,dc) then
18: Let Y(v)← Y(v) ∪ {c}
19: until u ≤ γ fmin(dc ,bc) or |Y(v)| > ∆

20: T = 2T
21: until |Y(v)| = 1 ∀v ∈ {1, 2...., n}
22: return xT s.t if c ∈ Y(v) then xT(v) = c

But, the running time of CFTP algorithm is an unbounded random variable whose order of
magnitude is typically unknown a priori and which is not independent of the state sampled A
naive user with limited patience who aborts a long run of the algorithm will introduce bias. Claim
of unbiasedness in Fills with respect to user impatience follows from the very nature of acceptance
rejection sampling together with the fact that all information is erased after each iteration. Thus,
if CFTP is always run for shorter time we will always generate biased samples in the sense that
some part of the distribution will never be visited.

Fills algorithm solves this problem by simulating a single chain from arbitrary initial state
and simulating all possible chains back in time in synchrony with the chain simulated in the
forward direction. Fills algorithm simulates reversed Markov chains using a updating function φ

s.t. x(t+1) = φ(x(t), R(t−1)). For general chains we propose a method to run all chains in synchrony
with the forward simulated chain in bounding chains algorithm.
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Algorithm 8 Fills algorithm with bounding chains

1: T = 1
2: repeat
3: Y(v) = C ∀v ∈ {1, 2..., n}
4: xT = z ∈U {1, 2..., k}V

5: Generate XT−1|xT , XT−2|xT−1, ...., X0|x1

6: Generate [U1|x0 → x1], [U2|x1 → x2], ..., [UT |xT−1 → xT ]

7: for t = 1 : T do
8: for each v ∈ {1, 2, ....n} do
9: Let Nv be the neighbours of v

10: Let Y(v)← φ

11: repeat
12: Choose c ∈U {1, 2, ..., k}
13: Choose u ∈U Uc

t

14: Let bc be the w neighbouring v with Y(w) = {c}
15: Let dc be the w neighbouring v with c ∈ Y(w)

16: if u < γ fmax(bc ,dc) then
17: Let Y(v)← Y(v) ∪ {c}
18: until u ≤ γ fmin(dc ,bc) or |Y(v)| > ∆

19: T = 2T
20: until |Y(v)| = 1 ∀v ∈ {1, 2...., n}
21: return x0

Fills algorithm for generation of perfect samples can be interrupted at any time, and yet, the
samples generated are not biased because, the running time of the algorithm and the returned
values are independent. Thus, Fill’s algorithm is similar to CFTP in that it uses Markov chains to
produce perfect samples, but it is based on the idea of rejection sampling instead of the concept of
coupling.
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Chapter 5

Experiments and Results

5.1 Various MCMC sampling methods

We wanted to check and compare various Markov chain sampling methods. For this purpose, we
sampled images for different temperatures i.e. for different values β’s and compared the results
from different methods. We also implemented Perfect Sampling using Bounding chains. The
results for attractive and repelling spins systems are as shown:

Figure 5.1: Bounding Chains with Attractive
spin system and β is 1/3

Figure 5.2: Bounding Chains with Repelling
spin system and β is 1/3
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5.2 Perfect Sampling from posteriors

We wanted to show how good perfect sampling is and to do so, we generated a random binary
(bi-label) sample from the prior using the Ising model using clique of size 2 only i.e. using only
neighbourhood interactions. From this we generate various test images by sampling from two
different Gaussian depending upon the pixel label. Now, using this as given data we generate
samples from posterior distribution and take its average which is MAP estimate. The results are
as shown :

(a) Prior Image (b) Data Image

(c) Variance Image (d) Average Posterior Sample

Figure 5.3: Image Samples when µ1 = 10, µ2 = -10, σ1 = 2, and σ2 = 2. Number of samples generated 20. Total Error
is 0. (Image size is 128× 128)
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(a) Prior Image (b) Data Image

(c) Variance Image (d) Average Posterior Sample

Figure 5.4: Image Samples when µ1 = 10, µ2 = -10, σ1 = 5, and σ2 = 5. Number of samples generated 20. Total Error
is 556. (Image size is 128× 128)

24



5.3 Expectation Maximization using Sampling on MRI Image

We show the practical application of posterior sampling on images. In the problem of soft image
segmentation with MRF prior on label image and Gaussian mixture mode likelihood, the E step
expectation is analytically intractable. There are algorithms which uses an approximation in
E step which approximates it to a distribution whose expectation is easy to obtain. Instead of
approximating the E-step with an approximate distribution whose expectation is easy to obtain,
we retain the original distribution and perform perfect sampling on this distribution

EP(xi ,x∼i |y,θt)[log P(yi|xi, θ)] ≈ EP(xi |x∼iy,θt)[log P(yi|xi, θ)]

We estimate the expectation using the average of a few samples that are obtained using the perfect
sampling procedure.

EP(xi ,x∼i |y,θt)[log P(yi|xi, θ)] ≈ 1
S

S
∑
s=1

xs∼P(x|y,θt)

log P(yi|xs
i , θ)

The M step is same as the original method. We got the following results:

(a) Original Brain MRI Image
(b) Segmented Brain MRI using

approximations in E step
(c) Segmented Brain MRI Image

without approximations in E step

Figure 5.5: Segmentation on Brain MRI

5.4 Uncertainty estimation using perfect sampling

In most of today’s segmentation problems the uncertainty estimations are not clear. We want to
identify the regions where the segmentation is sure and where it is not. Thus, their is need for
perfect sampling from the estimated posterior distribution for uncertainty estimation in various
real life scenarios like lesion detection. We can not use Gibbs sampling because Insufficient burn-in
artificially inflates the variance and hence we get incorrect uncertainty estimations. If we try to
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conservatively estimate the burn-in for Gibbs sampling then it can make the burn-in iterations too
large making the sampling too slow. Hence we use perfect sampling algorithms over bounding
chains to sample from arbitrary posteriors as described before. To evaluate the efficacy of perfect
sampling we first tested it on simulated lesion data and the results are as shown: The simulated

(a) Original Image (b) Mean Label Image (c) Variance Image

Figure 5.6: Uncertainty Estimation over samples from estimated posterior on simulation of lesion

data is a circular patch with guassian noise (0 mean and 1.414 standard deviation) added on top
of it. We further add two lesion regions in the foreground and background to evaluate efficacy
of proposed perfect sampling algorithm for uncertainty estimation. We can clearly see that for
segmentation with 2 labels, the uncertainty in lesion region is very high, where intensity is almost
in the middle range of two labels. Also the boundary points are regions of high uncertainty
because of smoothing. We also evaluated the performance of perfect sampling on simulated Brain
MRI data. We use EM algorithm with MRF prior as discussed above with approximation in E-step
to segment the brain image into 3 segments (CSF + Gray Matter + White Matter). We took a slice
with visible subcortical structure and added spatially varying smoothing, bias field, lesion and
gaussian noise to it. The results of uncertainty estimations are as shown:

(a) MRI with noise and bias (b) Mean Label Image (c) Variance Image

Figure 5.7: Uncertainty Estimation over samples from estimated posterior on Brain slice with subcortical structure
and simulated lesion

We can clearly see high uncertainty in the region of thalamus and in the lesion. This is because
it is very difficult to segment these regions into one of the three classes owing to the intensity
values in these regions.
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Chapter 6

Conclusion and Further Reading

We have discussed various methods of sampling and there applicability, also how they are useful
in context of images. Later, we introduced the idea of perfect sampling and how perfect sampling
methods are in general better, as they provide the idea when to stop the algorithm i.e. when it has
converged to the stationary distribution. In perfect sampling, we specifically studied Coupling
from the past (CFTP) and Fills algorithm which aims at removing user impatient bias from
CFTP. We have studied perfect sampling from Ising model, how it extends for sampling over pos-
teriors, method of bounding chains for general Potts model and how it is used for perfect sampling.

We studied another MCMC method Swendsen-Wang which samples from Potts model, we would
like to implement it in the future. We would also like to formulate perfect sampling procedure
for the CFTP for the Swendsen-Wang algorithm. In the whole report we only talked about the
sampling in discrete space Markov chains, we will try to understand methods for sampling in
continues space Markov chain. We also want to check the efficacy of the approach of perfect
sampling on various other real data sets for Infant MRI Segmentation and Tumor Segmentation.
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